Parecer Normativo ( ) - PN - definition. What is Parecer Normativo ( ) - PN
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Электронно-дырочный переход; Р-n переход; Pn-переход
  • Устройство простейшего прибора, основанного на ''p-n''-переходе — полупроводникового диода — и его символическое изображение на принципиальных схемах (треугольник обозначает ''p''-область и указывает направление тока).
  • Энергетическая диаграмма]] ''p-n''-перехода. a) Состояние равновесия; b) При приложенном прямом напряжении; c) При приложенном обратном напряжении.

P-n-переход         
p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от  — положительная) и электронной (n, от  — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и других).
Электронно-дырочный переход         
(p - n-переход)

область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n к дырочной p). Поскольку в р-области Э.-д. п. концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область. Однако после ухода дырок в n-области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в n-области - положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-л. п. образуется двойной слой пространственного заряда - отрицательные заряды в р-области и положительные заряды в n -области (рис. 1). Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внешнего электрического напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами в р-области и дырками в n-области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией основных носителей (электронами в n-области и дырками в р-области), протекает через Э.-д. п. в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (Потенциальный барьер). Разность потенциалов, возникающая между p- и n-областями из-за наличия контактного поля (Контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если положит. потенциал приложен к р-области, то внешнее поле направлено против контактного, т. е. потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны Э.-д. п. увеличивается (инжекция неосновных носителей), одновременно в р- и n-области через контакты входят равные количества основных носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через Э.-д. п. При повышении приложенного напряжения этот ток экспоненциально возрастает. Наоборот, приложение положит, потенциала к и-области (обратное смещение) приводит к повышению потенциального барьера. При этом диффузия основных носителей через Э.-д. п. становится пренебрежимо малой.

В то же время потоки неосновных носителей не изменяются, поскольку для них барьера не существует. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через Э.-д. п. течёт ток Is (ток насыщения), который обычно мал и почти не зависит от приложенного напряжения. Т. о., зависимость тока 1 через Э.-д. п. от приложенного напряжения U (вольтамперная характеристика) обладает резко выраженной нелинейностью (рис. 2). При изменении знака напряжения ток через Э.-д. п. может меняться в 105-106 раз. Благодаря этому Э.-д. п. является вентильным устройством, пригодным для выпрямления переменных токов (см. Полупроводниковый диод). Зависимость сопротивления Э.-д. п. от U позволяет использовать Э.-д. п. в качестве регулируемого сопротивления (Варистора).

При подаче на Э.-д. п. достаточно высокого обратного смещения U = Uпр возникает электрический пробой, при котором протекает большой обратный ток (рис. 2). Различают лавинный пробой, когда на длине свободного пробега в области объёмного заряда носитель приобретает энергию, достаточную для ионизации кристаллической решётки, туннельный (зинеровский) пробой, возникающий при туннелировании носителей сквозь барьер (см. Туннельный эффект), и тепловой пробой, связанный с недостаточностью теплоотвода от Э.-д. п., работающего в режиме больших токов.

От приложенного напряжения зависит не только проводимость, но и ёмкость Э.-д. п. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между п- и р-областями полупроводника и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды являются неподвижными и связанными с кристаллической решёткой ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением ёмкости Э.-д. п. При прямом смещении к ёмкости слоя объёмного заряда (называется также зарядной ёмкостью) добавляется т. н. диффузионная ёмкость, обусловленная тем, что увеличение напряжения на Э.-д. п. приводит к увеличению концентрации неосновных носителей, т. е. к изменению заряда. Зависимость ёмкости от приложенного напряжения позволяет использовать Э.-д. п. в качестве варактора - прибора, ёмкостью которого можно управлять, меняя напряжение смещения (см. Параметрический полупроводниковый диод).

Помимо использования нелинейности вольтамперной характеристики и зависимости ёмкости от напряжения, Э.-д. п. находит многообразные применения, основанные на зависимости контактной разности потенциалов и тока насыщения от концентрации неосновных носителей. Их концентрация существенно изменяется при различных внешних воздействиях - тепловых, механических, оптических и др. На этом основаны различного рода датчики: температуры, давления, ионизирующих излучений и т. д. Э.-д. п. используется также для преобразования световой энергии в электрическую (см. Солнечная батарея).

Э.-д. п. являются основой разного рода полупроводниковых диодов, а также входят в качестве составных элементов в более сложные Полупроводниковые приборы - Транзисторы, Тиристоры и т. д. Инжекция и последующая рекомбинация неосновных носителей в Э.-д. п. используются в светоизлучающих диодах (См. Светоизлучающий диод) и инжекционных лазерах (См. Инжекционный лазер).

Э.-д. п. может быть создан различными путями: 1) в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (р-область), а в другой - акцепторной (n-область); 2) на границе двух различных полупроводников с разными типами проводимости (см. Полупроводниковый гетеропереход); 3) вблизи контакта полупроводника с металлом (См. Металлы), если ширина запрещенной зоны полупроводника меньше разности работ выхода (См. Работа выхода) полупроводника и металла; 4) приложением к поверхности полупроводника с электронной (дырочной) проводимостью достаточно большого отрицательного (положительного) потенциала, под действием которого у поверхности образуется область с дырочной (электронной) проводимостью (инверсный слой).

Если Э.-д. п. получают вплавлением примесей в монокристаллический полупроводник (например, акцепторной примеси в кристалл с проводимостью n-типа), то переход от n- к р-области происходит скачком (резкий Э.-д. п.). Если используется диффузия примесей, то образуется плавный Э.-д. п. Плавные Э.-д. п. можно получать также выращиванием монокристалла из расплава, в котором постепенно изменяют содержание и характер примесей. Получил распространение метод ионного внедрения (См. Ионное внедрение) примесных атомов, позволяющий создавать Э.-д. п. заданного профиля.

Лит.: Стильбанс Л. С., Физика полупроводников, М., 1967; Пикус Г. Е., Основы теории полупроводниковых приборов, М., 1965; Федотов Я. А., Основы физики полупроводниковых приборов, 2 изд., М., 1970; СВЧ-полупроводниковые приборы и их применение, пер. с англ., М., 1972; Бонч-Бруевич В. Л., Калашников С. Г., Физика полупроводников, М., 1977.

Э. М. Эпштейн.

Рис. 1. Схема p-n-перехода: чёрные кружки - электроны; светлые кружки - дырки.

Рис. 2. Вольтамперная характеристика р - n-перехода: U - приложенное напряжение; I - ток через переход; Is - ток насыщения; Unp - напряжение пробоя.

ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД         
то же, что p-n-переход.

ويكيبيديا

P-n-переход

p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от англ. positive — положительная) и электронной (n, от англ. negative — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и других).

What is P-n-переход - definition